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It is shown that in systems with dry friction governed by the Amontons-Coulomb law motions exist in 

which dissipation of mechanical energy occurs after any time interval however long it may be. 

IN MANY cases a system with friction moves in such a manner that the work of the friction forces 
become smaller and smaller in magnitude [l, p. 1241. Appell has called this property the 
tendency of material systems to avoid friction and demonstrated it by proving the following 
statement. 

Let the material system under consideration: 
(a) be subject to some time-independent constraints, 
(b) be subject to the action of internal forces with a potential function which is positive or zero 
for all possible positions of the system and which vanishes when the system is in a position of 
stable equilibrium under the action of internal forces only, 
(c) contain rigid bodies or points each sliding along the other or along stationary bodies, and 
(d) have a force function of external forces that remains less than a certain value for all 
possible positions of the system in which there is at least one contact producing a force of 
sliding friction. 

The upper limit value of the power of friction forces then vanishes in the time interval in 
which the system has at least one contact with sliding. 

If we accept the classical Amontons-Coulomb law on sliding friction, we can conclude that 
the normal components of the reaction at some contact points vanish (and it seems that the 
system tries to be released from frictional constraints at those points). The velocities of sliding 
decrease in magnitude, and sliding tends to disappear at the other contact points to which 
sliding friction forces are applied. These conclusions still hold if we accept the general law of 
friction, namely, when a rigid body A slides along a rigid body B, assumed to be stationary, and 
the friction force is positive (F > 0) and has the direction opposite to the velocity V of the 
contact point, F = 0 if and only if the normal reaction is equal to zero. Thus, the power of the 
friction force being equal to -F I V I is essentially of negative value which vanishes only when 
the normal reaction or the velocity of sliding is equal to zero. 

But it is not impossible to conclude from the above statement that sliding with friction will 
terminate after a finite period of time, i.e. sliding with friction vanishing asymptotically in time 
or a permanent alternation of rolling and sliding will be impossible in a system that satisfies 
conditions (a)-(d). The problem of the possibility of pure rolling as the steady state of motion 
is attained in a system for a long but finite lapse of time and is meanwhile of fundamental 
importance when proving the correctness of the classical model for non-holonomic systems. 

tPr&L MCZL Mekh. Vol. 57, No. 1, pp. 12-19, 1993. 

11 



12 A.S. SUMBATOV 

Methods of analytical mechanics enable us to derive the complete system of differential 
equations for the problem of a rigid body rolling without sliding along the surface of another, 
and it is not necessary to specify the forces that arise at the point of contact and ensure that 
there is no relative sliding of the bodies at this point. This system is ideal according to 
Lagrange, and the method of virtual displacements provides the equations of motion of the 
bodies in a form that does not contain reaction forces explicitly. Having the equations of 
motion, one can derive formulae for the reaction forces but of course one cannot determine 
their origin. 

In the general case, the kinematical condition for there to be no sliding at the point of 
contact of two bodies is defined by non-holonomic equations of the constraints, and the model 
of the rolling of a body without sliding is an idealization itself because in the large variety of 
motions of real bodies there are both rolling and sliding, which alternate during a final period 
of time of an observation. In order to derive the equations of motion of a system with sliding, it 
is necessary to specify the reaction force that arises at the point of contact of the bodies. As a 
rule, the reaction is modelled by the friction force (dry, viscous or combined friction) or by the 
force of creep. 

1. We will assume that a force of dry friction acts from a reference rigid body upon another 
body moving along it. According to the Amontons-Coulomb law, in the case of pure rolling 
the ratio of the tangential and normal components of the reaction computed using the 
equations of motion of the body and the equations of the constraints must be less in magnitude 
than the coefficient of friction at rest. Otherwise, rolling without sliding is impossible, and one 
cannot use the non-holonomic model. 

But this condition is insufficient to enable us to conclude that the model for a system with 
rolling is correct when using the friction forces: solutions of the non-holonomic model will be 
adequate to reality only if any small sliding that may be due to reasons not taken into account 
will vanish in a short period of time. In particular, there should be no vanishing sliding in 
which zero velocity of sliding is attainable only at separate points of the numerical semi-axis 
t2to. 

The sufficient conditions for the absence of vanishing sliding in a mechanical system with 
dry friction have been given by Pozharitskii [2]. Those conditions are extremely lengthy. For 
this reason, it seems, there are no applications of the theoretical results obtained in [2]. 

It turns out that sliding of infinite duration or a permanent alteration of sliding and rolling is 
quite possible in systems with dry friction. This is illustrated below by the two simplest 
examples. 

2. Consider the material curve along which a heavy bead can move with friction. Let the 
equation of the curve have the form 

y = -xx/2 

with a suitable choice of the system of coordinates. 
The bead can be in equilibrium if 4 d x G k, where 0 c k c 1 is the coefficient of friction. 
We will derive the equations of motion of the bead moving to the point q-k, - k2 12) from 

the right. The natural equations have the form 

V2/P = P,, - N, dv/dt = P7 - kN 

Here v is the modulus of the velocity of the bead, p is the radius of curvature, P, and Pn are the 
projections of the gravity force onto the tangential and normal directions, and N is the normal 
pressure acting from the curve on the bead. The mass of the bead and its weight are assumed 
to be unity. These equations can be written in the form 

&/dt = w-l, du/dt = [t(k- y’) + ky”v2] r-3; r = (1 + yf2)’ 
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(the prime denotes the derivative with respect to x), whence we find 

du/dx = k - y’ -I- 2ky’ur-2, U = v2/2 

The general solution of this linear equation has the form 

u(x) = [24(-l) + 21% dw] E(x), E(x) = exp 

When 

we have 

u(-k) = 0, $y&)=O. 

Therefore, the limit 

holds for this solution, i.e. while the bead moves under the specified initial conditions it 
reaches the point D after an infinite time. 

3. Consider the plane motion of a heavy inhomogeneo~ wheel along a rectilinear rail. 

The eqtarions of motion. We will write the equations of motion of the wheel with sliding 
[Z, 3] in the dime~io~e~ form 

+=c,.J, &=Pal +Q, ;=Rw'+W (34 
P = (II -1) j/s, Q = -j/s, j = t + qplz, 0 = p/f 

R = t + (q - 1) o’rl + xclk)ls, w = --@I + M)/s 

4 = OSin~, 7j = 1 - ocosrp, s = h + 8, fi = sgn v 

1 = K2/t2, 0 = Cl/l, u = V/(ri), 7 = it, I = (g/r)’ 

Here the phase variables cp, S2 and V are, respectively, the angle of rotation, the angular 
velocity of the wheel, and the linear velocity of its point touching the rail. There are also the 
following parameters: r is the geometrical radius of the wheel, x is the central radius of inertia, 
p is the offset of the centre of mass, g is the acceleration due to gravity, and k is the coefficient 
of friction, The dot denotes the derivative with respect to the dimensionless time r. 

The functions 4 and r,r are the coordinates of the centre of mass C with respect to the 
orthogonal axes Pxy perfor~ng the translational motion (P is the point of contact of the 
wheel and the rail, and the axis Py is directed vertically upwards), and e, is the angle between 
the descending vertical and the segment connecting the geometrical centre 0 of the wheel and 
the point C. 

In the case of pure rolling, the equations of motion of the wheel have the form 
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The mechanical system under consideration has a variable structure, namely, rolling and 
sliding can alternate, and wheel detachment from the rail is possible at high angular velocity. 

Conditions for the change in the patterns of motion. For the argument that follows it is 
necessary to establish the conditions for a transition to occur from sliding to rolling and vice 
versa. 

Incidentally, note that 

(Pw2 + Q) I,=, * f&Q2 + 1) 

which is typical for systems with dry friction. 
If u = 0 at a certain instant of time rolling will occur subsequently under the conditions that 

at this instant the inequalities 

I 

[de2 + A) + yrll t 
b.?hfTj + v($ + K2) 

<k (3.3) 

and s > 0 are satisfied and the constraint is in tension, i.e. 

02t27j t V(Q2 + K2) < 0 (V = W2(r, - 1) -1) (3.4) 

The conditions for the transition from rolling to sliding to occur in the general case of the 
plane motion of a rigid body along an arbitrary curve with dry friction can be found in ]4] 
where an elegant geometrical interpretation of these conditions is also given. The inequalities 
(3.3) and s > 0 (see below) encapsulate them for the system considered. 

One can obtain condition (3.4) in the following way. Let us release the wheel from the 
constraint and change the action of the latter by the reaction force. The theorem on the motion 
of the centre of mass C yields mj;, = N -mg as the projection onto the axis Py whence it 
follows that j;, + g > 0 if the constraint is in tension. But we then have y, = r- pcosq Hence, 
the required condition takes the form 

a(3sinlfY + w2c0s(p) + I > 0. 

If we substitute the expression for rit from Eqs (3.2) into this inequ~ity we obtain (3.4). By 
substituting ri, from (3.1) we obtain the condition of tension of the constraint with the wheel 
slides 

v<o (3.5) 

Taking conditions (3.4) into account we can write inequality (3.3) in the form 

m+X 
[I[ tfk<O; I= ffd2----- -Q]& J=w2m-A-q2 

77 
(3.6) 

The further analysis will be carried out under certain quite natural restrictions on the 
parameters, We will assume that the centre of mass is located inside the wheel (i.e. cr cl), the 
square of the dimensionless central radius of inertia satisfies the inequality A>% (if this 
condition holds, the function i = c? -acosp, + A, which occurs frequently in the discussion that 
follows, is positive for all values of IJ$, the coefficient of friction lies in the range 0 < k c 1, and 
the values of the parameters A, o and k ensure the validity of the condition s(q) >O for all 
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values 0 G p, G 21~ and fi = 21. It is well known [4] that when s < 0 a shock reaction can arise in 
the system and, in the case of a bilateral constraint, the non-uniqueness of the solutions 
(Painleve’s paradox) can occur. 

Remove the modulus sign in inequality (3.6) if C 3 0, i.e. if 0 c Q, d R. When n c p d 2~ the 
situation is completely symmetrical. 

In the specified range of variation of the angle 4, the function m(p) has a single zero 
0 < p < ~12 since m(0) < 0, 4x12) > 0, rl> 0. The coefficient of o2 in the expression for I is 
positive. Therefore 

I<0 for a2 <CT, I>0 for W2 >W2; C? =n2/(M+V 

We have 

I + Jk = s+(R+02 + W,), -Z t Jk = -s(R a2 + W_) (3.7) 

The values of the corresponding expressions computed when fl= 1 or JJ = -1 are marked by 
the plus or minus subscripts. 

Let us find the ranges of constant sign of the function 

F+(s) = + = 
i,v + hrlk 

+ i+m + A.5 

Its numerator does not vanish (5 > 0). The denominator Z(p) has exactly 
@)_ In fact, we have 

Z(0) = m(O)k < 0, Z(g) = Xosinp*/(l - ocosy7*) > 0 

dZ/dq = j+r; + (1 - r) + !$)i > 0, cp E (0, P*) 

Z(p)>0 for @<pGn 

Thus, the ~eq~lity I + Jk c 0 holds for 0 c p c p’ and for any values of w’. 
we have 

Z+Jk>O, if w”>1;+(4) 

Z+Jk<O, if 02<~(Q 

In a similar manner we investigate the function 

F_(l) + = i-0 - M 

hktj i - 

one zero ip’ E (0, 

When ~t&cp>rp’ 

The zeros of its numerator N correspond to the points of intersection of the branch of the 
hyperbola 5 = (q+ Alq)k and the circle 5’ +(q -1)” = oz. There are two possible points of 
intersection. We will not discuss the case of tangency because it is not typical. It is obvious that 
the curves are disjoint provided that 

u < 2kq?i (3.8) 

Let us denote the zeros of the function N by p, < rpz. 
The denominator D(p) >O at cp E[O, q], where T< z is the angle for which i = 0. On the 

other hand 
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D(n) = -m(x) k =c 0, dD/dq = Q_ + (1 - a)i < 0, 9 E @, nr) 

Hence, a single zero rp” of the function D exists in the interval (T, z), and we have 0 < q1 c 
vz < 9” c 1c since N c 0 in the interval specified. 

Thus, if N is not equal to zero, then -I + Jk < 0 for 0 c Q, < cp” and for any values of 0’. In the 
case when N((p,) = N((p,) = 0, this inequality is satisfied in the interval (0, CJJJ u (Pi, (p”) and for 
any values of ~0’. 

It can be verified that 

W2 < F_(& ?r > tp > 9”; W= < F+(t), n > cp > ppl 

F+(t) < fv - I)-‘, A > 9 > 42 

Let us summarize the results of the investigation of the conditions wherein sliding of the 
wheel occurs. We will assume that TV = 0 at this instant of time, 

(a) If the offset of the centre of mass of the wheel from its geometrical centre is small so that 
inequality (3.8) is satisfied, then rolling of the wheel will be preserved for cuz c Zz and also for 
o2 > 5’ but with APE [O, rp’]. When 9’ c 9 <a and Z12 c w2 <F+ sliding will not occur but when 
w* > F+ it will start when V= 0 (by virtue of relations (3.11, (3.7), sgnu = sgnQ If x12 e p < A, 
then condition (3.5) for the constraint to be in tension must be satisfied. 

(b) Let w2 < Zi*. If the function F_ vanishes at two points of the interval (0, r#‘“) that occurs 
for a wheel with a large offset of the centre of mass, then rolling will be sustained when 
Q, E [0, @]u[~~, rr]. Sliding with u < 0 will inevitably start in the interval (pt c PC rp,. When 
o2 > G2 the conditions for the transition from rolling to sliding will remain the same as in case 
(a). 

It is worth noting that in case (b) when the value of the angular velocity is small enough the 
absence of sliding cannot be ensured in principle by the friction force. 

The inequalities were analysed for 5 > 0. The substitution of -5 for 4 yields a situation which 
is symmetrical to that considered above. One need only take into account that F_(t) = F+(-4). 

~fabi~ily ofrding. The correctness of the modelling of the interaction force between the 
wheel and the rail by the force of dry friction means, in particular, that if, for some reason that 
was ignored when choosing the initial conditions for rolling, the velocity of sliding is not zero 
but small in magnitude, sliding motion will disappear and will transform into rolling in a short 
time. This requirement is quite natural and follows from the fact that the accuracy of meas- 
urements with physical instruments is limited and the reality is only roughly approximated by 
mathematical models. 

We will consider a wheel with a small offset of the centre of mass (condition (3.8) is 
satisfied). Let 2) = 0 at the initial instant. Sliding will not occur if 

9 E i-4, 9'1 or d<F-E (3.9) 

F= 
F+(& if 9l < 9 Q r 

F_(& if ‘/I < 9 < 2s - 9* 

where the constant E > 0 is chosen in such a manner that F--E > 0. 
The total mechanical energy of the wheel is constant while the wheel is rolling. Therefore 

Using condition (3.9) we find that 

h< +(A + t2 t v2)(F - E) t q 

in the interval (qr’, 2rr-fp3. 
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The right-hand side of this inequality is a positive function of Q, when ~4, 
the ends of the interval specified, and a minimum h(c) of this function exists. 

Assume that h<h(~) and condition (3.9) is satisfied at the initial instant. 
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it is unbounded at 

Then sliding will 
never occur. One can prove that if sliding existed at the initial instant it will cease after a finite 
time. 

It is sufficient to consider the case 4 > 0. Let v = 0. When 0 s 96 9 we have 

;=R+d+W+<W+<-m, CO, m, =minf 
Jh + 8.k 

f 
s+ 

Because of the continuity this negative-valued upper bound holds in the half-interval [q’, q’+S,) if 
6, > 0 is sufficiently small. When (p’+ 8, z q~ G E we have 

$ = R+(w' - fi+) < -eR+ 4 --Pm2 < 0, m, = min ( 
i,m(d + hf 

1 
wl 

Let uc0. If OSrpGqY, then 

6 = R-u' + W_ > ft'_ 7 R(q - &)=/s_ 

by virtue of (3.8). The estimate is true in a small half-interval [q”, q”+S,), 6, 90. When @‘+S, c Q, Q R 

we have 

ir = R_(w' - F_) > -eR_ > 0 

since F, SF_ and R_ < 0 over the interval specified. 
Thus, the sliding that occurred will cease after a finite time. 

Mottos with ~onst~t ~~tern~ion between roiling and slides. Put h(0) =h. Let (p= v= 0, 
o > 0 and the consttit h = fi, >h, at an initial instant. If w* c F, the wheel will roll without 
sliding until the point which represents the motion of the system in the (h, 9) plane intersects 
the graph of the function 

G&9 = +(A t t2 + q2)F t 77 

at 9 = Q;~ moving initially along the straight line h = fb. This function is even with respect to pl 
and attains a minimum value h > 0 at the two points tp’< cp, CIC and 2%-p,,,. 

When Q, > ++, sliding will start because the inequality h, > G implies that w2 > F. The graph of 
the fiction Fin the (co’, p) plane is qualitatively similar to that of G (9). 

When p d (pO the representative point moves along an integral curve of the equation 

dw2/dtp =W(w2 + 1) (3.10) 

and, when Q, > qO, of the equation 

do2fdq = 2(P+o* + Q,) 

until sliding ceases. In the case !I,, = h, the corresponding integral curve r of Eq. (3.10) touches 
the graph of F(q) at the point pm which is not, generally speaking, the point of a minimum of 
this function. In the general case, the curvatures of the curves r and F are distinct at the point 
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Q = pm, i.e. 

d2(02-F) ’ 

drp2 I 
= (4u2 (w2 

dH d2F 
t 1) t 2(w2 t 1) --- 

4 dP2 
) # 0. (3.11) 

9m I 9m 

and the curvature of the curve G does not equal zero. 
When the values of ti =h, -h are small the sliding motion of the wheel is split into two 

sections. In the “acceleration” section the velocity v increases monotonically from zero to 

1 
hnax = -j- cbJ) GPO1 - (Po12 + .I. I +P~ 

R+M2 - F, 
=%c w 1 

In the “deceleration” section the velocity v of sliding decreases from Q_ to zero, and where 

Here lpol > rp, is the value of 9 at which the representative point leaves the region enclosed by 
the curve F (v, = ~~~*)) according to the third equation of system (3.1), cpoz is the angle at 
which a new rolling starts, and the dots denote infinites~al terms of the third order and higher 
in the Taylor expansions. 

Note that the transition from rolling to sliding occurs without singularities, while in the 
opposite transition the acceleration ti has a discontinuity (the so-called “soft” shock). 

By virtue of (3.11), the smallness of Ah, and the continuity of the functions o(p), G(v) and 
F( cp), the values of Ap = (pa -(PO and cp, - pO are the equivalent infinitely small quantities 
(A9 _ P,,, - %), and 

(3.12) 

(estimate (3.12) may be obtained by replacing the curve G by an osculating parabola in a small 
neighbo~ho~ of the point 9 = tp, in the (h, 9) plane). 

When the wheel slides its total mechanical energy (apart from a multiplier and an additive 
constant) is equal to 

E= f Ku - WI2 + @ t h) o2 ] t 71 

The power of the friction force is i = yu;Uivf s c 0. 
Since c((p,)lr= 0, we have c@&- Ag and c(4pm)- Aq. Hence, u_ -(A@‘, and the energy 

loss for one cycle of sliding is 

AE -CA&4 (3.13) 

From estimates (3.12) and (3.13) it follows that the total mechanical energy of the wheel 
satisfies the condition 4 > h after sliding has terminated. Because of this, the short-term 
sliding near the points ‘p = 27r-c&,, and Q, = cp, will start no matter what kind of motion, 
rotational or oscillatory, will thereafter occur. After the ith cycle of sliding the energy is hi ? h, 
(the monotonic decreasing sequence {hi} has the value k as the limit). Rolling and sliding 
of the wheel will alternate constantly. The period of sliding then decreases. 
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